Snapshot:

Instructor: Amanda Armstrong
Spring 2024 Start Date: TBD

Significant advances in access to geospatial datasets and cloud-based computing resources have ushered in a new era of user-friendly big data analysis, and satellite remote sensing has become a critical component of many environmental research and monitoring programs. However, effective use of satellite imagery requires a foundational understanding of sensor, image, and surface characteristics as well as methods for translating analysis-ready data to decision-ready analysis.

This course will introduce students to fundamentals of remote sensing theory and image processing techniques using the Google Earth Engine platform, which “combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities.” By integrating hands-on practical training with evidence-based experiential learning, students will establish a basic understanding of how to use remote sensing as a tool for environmental problem-solving. This course uses Javascript for creating geospatial workflows in the Google Earth Engine Code Editor; any coding background is helpful but not required.

By the end of the course, the student will be able to:

  • Improve their understanding of the physical processes involved in the acquisition of remote sensing imagery, as well as the unique spectral, spatial, temporal, and radiometric properties of different image sources
  • Build a working knowledge of a wide array of geospatial datasets available in the Earth Engine Data Catalog, including optical, thermal, and microwave imagery from the Landsat, MODIS, Sentinel-2, and Sentinel-1 satellites, and derived products such as the Hansen Global Forest Change and JRC Global Surface Water datasets
  • Use the Earth Engine Code Editor to develop basic geospatial workflows using the JavaScript API
  • Explore both static and interactive data visualization techniques including tables, maps, charts, GIFs, and Earth Engine Apps
  • Apply standard multi-spectral and multi-temporal image processing techniques, including basics of land cover classification and change detection
  • Develop a portfolio of example scripts, data visualizations, and analyses across a range of environmental application areas